Framed Knots in 3-manifolds
نویسنده
چکیده
For a fixed isotopy type K of unframed knots in S there are infinitely many isotopy classes of framed knots that correspond to K when we forget the framing. We show that the same fact is true for all the isotopy types of unframed knots in a closed oriented 3-manifold M , provided that M 6= (S × S)#M . On the other hand for any M = (S × S)#M ′ we construct examples of isotopy classes of unframed knots in M that correspond to only two isotopy classes of framed knots. 2000 Mathematics Subject Classification. Primary: 57M27
منابع مشابه
The Universal Order One Invariant of Framed Knots in the Total Spaces of S-bundles over Orientable Surfaces
It is well-known that self-linking is the only Z-valued Vassiliev invariant of framed knots in S. However for most 3-manifolds, in particular for the total spaces of S-bundles over an orientable surface F 6= S, the space of Z-valued order one invariants is infinite dimensional. We give an explicit formula for the order one invariant I of framed knots in orientable total spaces of S-bundles over...
متن کاملFramed Knots in 3-manifolds and Affine Self-linking Numbers
The number |K| of non-isotopic framed knots that correspond to a given unframed knot K ⊂ S is infinite. This follows from the existence of the self-linking number slk of a zerohomologous framed knot. We use the approach of Vassiliev-Goussarov invariants to construct “affine self-linking numbers” that are extensions of slk to the case of nonzerohomologous framed knots. As a corollary we get that...
متن کاملEuclidean Geometric Invariant of Framed Knots in Manifolds
We present an invariant of a three–dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. An important feature of our work is that we are not using any nontrivial representation of the manifold fundamental group or knot group.
متن کاملFramed Knot Contact Homology
We extend knot contact homology to a theory over the ring Z[λ±1, μ±1], with the invariant given topologically and combinatorially. The improved invariant, which is defined for framed knots in S and can be generalized to knots in arbitrary manifolds, distinguishes the unknot and can distinguish mutants. It contains the Alexander polynomial and naturally produces a two-variable polynomial knot in...
متن کاملSeifert Fibred Knot Manifolds
We consider the question of when is the closed manifold obtained by elementary surgery on an n-knot Seifert fibred over a 2-orbifold. After some observations on the classical case, we concentrate on the cases n = 2 and 3. We have found a new family of 2-knots with torsion-free, solvable group, overlooked in earlier work. We show also that there are no aspherical Seifert fibred 3-knot manifolds....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001